A Stereoselective Synthesis of Substituted Allyl Alcohol by Threecomponent Rection of Acetylenic Sulfone, Phenylselenomagnesium Bromide and Ketones

Mei Hua XIE^{1, 2}, Lu Ling WU¹, Xian HUANG¹*

¹Department of Chemistry, Zhejiang University, Xi-xi Campus, Hangzhou 310028 ²Department of Chemistry, Anhui Normal University, Wuhu 241000

Absrtact: Phenylseleno and sulfonyl substituted allyl alcohols were synthesized stereoselectively by the three-component reaction of acetylenic sulfone, phenylselenomagnesium bromide and ketones in one-pot.

Keywords: Acetylenic sulfone, ketone, allyl alcohol, stereoselectivity.

Substituted allyl alcohols are useful intermediates in organic synthesis, for example, they can be hydrogenated or isomerized to aldehydes enantioselectively¹. Substituted allyl alcohols are usually prepared based on Reformatsky reaction of the corresponding ketones or Horner-Wadsworth-Emmons reaction but a mixture of isomers is often obtained². Michael addition is acknowledged as useful tool for constructing complex organic molecules and is widely applied in organic synthesis³. But the electrophile, which are used to capture the products of the Michael addition, are mainly aldehydes⁴. Recently, we have reported the synthesis of substituted allyl alcohols from the Michael-aldol tandem reaction of acetylenic sulfone, magnesium selenolate and aldehydes⁵. As an extention of our research, we would like to report herein the high stereoselective synthesis of substituted allyl alcohol from the three-component reaction of acetylenic sulfone, phenylseleno-magnesium bromide and ketone.

The three-component reaction of acetylenic sulfone 1, magnesium selenolate 2 and aliphatic ketone 3 in THF/CH₂Cl₂ at -20° C to affords the substituted allyl alcohol 4 as the final product (Scheme 1). The results are summarized in Table 1.

However, when acetophenone was used, no expected tandem adduct was obtained from the three-component reaction of acetylenic sulfone 1, magnesium selenolate 2 and acetophenone. This may due to the stereo effect because acetophenone is more crowded than aliphatic ketones.

All the products were characterized by ¹H NMR, ¹³C NMR, IR, EIMS and elemental analysis. The configuration of compound *Z*-**4** was deduced from that of (*Z*)-6-phenyl-

^{*}E-mail: huangx@mail.hz.zj.cn

seleno-5-(*p*-tolylsulfonyl)-4-methyl-5-undecen-4-ol (Z-**4b**), which was confirmed by NOESY spectrum.

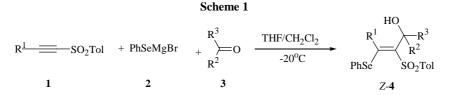


 Table 1
 Three-component reaction of acetylenic sulfones with phenylselenomagnesium bromide and aliphatic ketones^a

entry	R^1	\mathbb{R}^2	R ³	time (h)	yield of <i>Z</i> - 4 (%) (<i>Z</i> / <i>E</i>) b
1	Ph	CH ₃	$n-C_3H_7$	3	70 (Z- 4a , 95/5)
3	Ph	- (CH ₂) ₅		3.5	65 (Z- 4b , 96/4)
5	Ph	CH ₃	CH ₃ CH ₂	3	69 (Z- 4c , 95/5)
2	$n-C_5H_{11}$	CH ₃	$n-C_3H_7$	3	79 (Z- 4d, 96/4)
4	<i>n</i> -C ₅ H ₁₁	$-(CH_2)_{5}^{}$		3.5	81 (Z- 4e, 95/5)

^{*a*} The reaction was carried out at -20°C by adding **1** (0.5 mmol), **2** (0.6 mmol) and **3** (0.5 mmol) simultaneously in THF/CH₂Cl₂ (v/v = 1/4). ^{*b*} Isolated yield. The ratio of Z/E was determined by 400 MHz ¹H NMR spectra

In conclusion, we synthesized substituted allyl alcohol conveniently by the three-component reaction of acetylenic sulfone, magnesium selenolate and aliphatic ketone. The method had the advantages of simple procedures, mild reaction conditions and high selectivity.

General Procedure: Acetylenic sulfone (0.5 mmol) and ketone (0.5 mmol) were added to a colorless solution of phenylselenomagnesium bromide (0.6 mmol) in THF/CH₂Cl₂ (v/v=1:4, 5 mL) at -20° C with stirring. The reaction mixture turned to a pale yellow solution, which was maintained stirring at -20° C for 3-3.5h. After usual workup, the desired tandem adduct **4** was obtained.

Acknowledgment

The project was supported by the National Natural Science Foundation of China (No. 29772007).

References

- 1. K. Tago, H. Kogen, Org. Lett., 2000, 2, 1975, and references therein.
- (a) K. Tanaka, S. Qiao, M. Lo *et al., J. Am. Chem. Soc.*, **2000**, *122*, 9870. (b) J. A. Murphy, C. W. Patterson, J. Chem. Soc., Perkin Trans 1, **1993**, 405.
- 3. (a) R. Tamura, A. Kamimura, N. Ono, *Synthesis*, **1991**, 423. (b) H. Hagiwara, T. Okamoto, N. Harada, H. Uda, *Tetrahedron*, **1995**, *51*, 9891.
- 4. M. Ono, K. Nishimura, Y. Nagaoka, K. Tomioka, Tetrahedron Lett., 1999, 40, 1509.
- 5. X, Huang, M. Xie, Org. Lett., 2002, 4, 1331.

Received 9 September, 2002